SWEN 7 72-Software Quality
ENngineering

W3-1 Software Metrics Overview & 7 Quality Tools

Measurements & Metrics

 Measurements: Raw numbers

* Metrics: (Usually) derived/computed numbers that:
* Indicate the extent to which some objective is being achieved
» Facilitate cross-comparison
» Can serve as the basis for actions to improve achievement of the
objective
* |dentifying useful metrics is hard work!
* Many times, we can’t find any for some objectives
e [f sO, use subjective evaluations

Some Measurements for Software

e Size: Function points, story points

e Time and effort for different project activities

e Defects found, classified by phase/increment occurred,

phase/increment found, module, type, severity

e Failures and when they occurred

e Staffing, requirements changes, customer satisfaction
(survey results), etc.

Lines of Code

* Physical
* How many lines of text?

* With or without comments
* With or without whitespace

* Logical
* Attempt to count executable statements
e for (i=0;i<10; i++) printf("hello"); /* How many loc is this? */

Function Points

* Function point metric uses five major (weighted) components to
obtain its value:

 -Number of external Inputs x 4 (Els)

 -Number of external outputs x 5 (EOs)

 -Number of external inquiries x 4 (EQs)

 -Number of internal logical files x 10 (ILFs)

 -Number of external interface files x 7 (EIFs)

Function Points (Cont)

Application Being
: g Counted

Screens

/ Feeds (Out)

—* Reports =-
3
\ Other QOutputs

Other Inputs
(Online)

Data :
Feeds

EIFs

~.\ /

Ecnher
__! Applications

src: https://alvinalexander.com/FunctionPoints/FPArchitecture2.jpg

Function Points (Cont)

* These weights may be adjusted higher or lower if the complexity of
the software is particularly low or high. The values above are
average complexity.

 These are used to calculate function counts (FCs). Function count is
derived as follows:

 FC=(2 (Z Wij * Xij)) -- where Wij are the weighting factors above,
and Xij is the numbers of each component in the application.

14 GSC’s

 The second step is to evaluate 14 general system characteristics and
rate on a scale from 0 to 5 based on

e -Distributed functions

* -Performance

e -Heavily used config

* -transaction rate

e -online data entry

e ..etc

VAF and Final Calculation

* VAF=0.65+0.01) Ci -- where Ci is the score for each individual
general system characteristic (the 14 things above).

* .65 is a weighting value. When GSCs are low, .65 is used. When GSC
are high, 1.35 is used. The .01 is to put everything on the same scale
(or, at least, that's what it appears to do. No source seems to
specify what it does.)

* The final function point value is:

* FP = Function Count (FC) x Value Adjustment Factor(VAF)

Metrics for Software

* Product Metrics
* Indicate the quality of the product produced

* Project Metrics
* Indicate whether process execution (business aspects) are on track

* In-Process Metrics

» “Barometers” or “dashboard” to indicate whether the process appears to be
“vvorking normally”

 Allows making changes while there is still a chance to have an impact on the project

 Useful during the development and maintenance process to identify problems
and areas for improvement

Software Metrics — Things to Consider

* AS you see each metric, think about:
* How useful is it? How would this be used?
« How meaningful is it?”

 How easy is it to gather”? How much extra work is it for developers to
generate the numbers”?

* Are there ways to “beat / defeat” this metric?
« (Can you “make it look good” in ways that don’t achieve the objectives?

» What other metrics do you need to get a balanced picture?

Product Metrics

e Performance
e | ots of measurements, lack of good metrics
e Reliability
e Defect density: Defects per KLOC (KLOGC: 1000 lines of code)
e [ailure intensity: Number of failures per (hour of) operation
e Availability
e Uptime %

Product Metrics - Continued

* Usability
« SUMI score: user survey results, relative to “state-of-the-art”

 Evolvability, safety, security
* Metrics are more like measurements, value as indicators debatable

* Overall
» Customer satisfaction: results of customer surveys
» Customer reported defects: defect reports per customer-month

https://eaexplorer.hana.ondemand.com/_item.html?id=10647#!/overview

Defect Density (Example)

e Shipped Source Instructions
e SSI =SSl (prev release)

. + CSI (new and changed source instructions)
. - Deleted code
. - Changed code (avoid double count)

* Total Defects/KSSI

Customer Perspective

e Customer Problems Metric -- Problems Per User Month(PUM)
 PUM =

* Total problems reported (true and non-defect-oriented) for month

* div Total Number of License-months of software during period

* What might be a weakness here?
* |sthere a way to “break” this?

Project Metrics

e (Cycletime
e Elapsed time from requirements to delivery
e Sprint length, epoch length
e Productivity
e Size of delivered software / total effort
e Any weaknesses?
e Rate of Requirements Change
e 9% of requirements that changed plotted vs. time
e Any weaknesses?

Project Metrics - Continued

 Estimation Accuracy
* % difference between estimated and actual
« Can be done for cycletime (completion date), effort

» Staffing Change Pattern
* % of turnover (entered, left) plotted vs. time
 High staffing change will impact productivity, quality

IN-Process Metrics

 Tracking metrics during a project (“in-process”) provides a
powerful monitoring and control tool
« Ensure that quality is in control
« React quickly to understand and respond to observed variations

IN-Process Metrics: Detects, Reliabllity

* Reliability growth pattern
* Failures during system testing plotted vs. time
* Expected: spikes during each release, decrease over time
* Magnitude of spike related to significance, volume of changes
 Pattern of defects found (arrivals) during testing
* Test defects found plotted vs. time during testing
« Should decrease significantly close to release
« Can project “latent defects” (defects left at release) from this
» Defect density
» Defects per KLOC (can be classified by type, module)
 Highlights “hot spots”
» Post-release defect density
« Strong indicator of effectiveness of testing

IN-Process Metrics: Maintenance

* Backlog Management Index

» Rate of problem arrivals / rate of closure
« Should be close to 1, at least for high severity

* Responsiveness of fixing

» Average closure time, age of open & closed problems, % late fixes
« Should stay within target values

* Fix quality
 Number and % of defective fixes (didn’t work or created new bugs)

In-Process Metrics: Management

» Cost of Quality (CoQ)

 Total effort on quality assurance activities: testing, reviews, procedures
« Should be as low as possible

» Cost of Poor Quality (CoPQ) -- Technical Debt

* Total effort expended on rework
 Should be within range (what if it is “too low” -- isn’t that great?)

In-Process Metrics: Management
(Continued)

* Phase/sprint containment effectiveness / defect removal
effectiveness

* What % of the errors were detected within that phase/sprint?
« Shows effectiveness of reviews and other quality procedures

* Preferably around 70% or so
o Ifitis 97%, is that good?

* Note: Containment effectiveness can also be applied to
Incremental development
* Increment containment effectiveness

Summary

* There are a number of metrics that can give a meaningful picture
of what is going on in a project
 There are metrics that can help to identify problems and areas of

improvement (in-process and post-mortem), as well as metrics that
evaluate results

* We need to think carefully about what the metrics indicate about the
process and product quality

* By designing a quality program that uses multiple metrics in
conjunction with each other, we can get a balanced picture

* Most of the metrics come from relatively little raw measurement
data: size, effort, defects / failures, timeline data

The Seven Basic Tools

» Checklists (Checksheets)

* Pareto Diagrams

* Histograms

* Run Charts

« Scatter Diagrams (Scatter Plots)

« Control Charts

» Cause-and-Effect (Fishbone) Diagrams

What Are These Tools?

« Simple techniques to:
 Track quality performance and trends
e [dentify the existence of quality problems

* Analyze and gain insights into the causes and sources of quality
problems

* Figure out which problems to address

 Help eliminate quality problems
» Defect prevention, not just detection and correction

* Basic knowledge for anyone interested in quality, engineering
problem solving, and systems design
* Probably already familiar with most of these

Why Exactly Seven Tools?

« Kaoru Ishikawa promoted the notion of seven basic tools that could be used to
address quality

* Designed for manufacturing environments, but applicable to engineering &
management, too

* There are other very useful tools:
* Templates, workflow automation
* Pie charts and other graphical representations
 Relationship diagrams, tree diagrams, etc. (“Seven new quality tools”)
« System dynamics diagrams and influence diagrams
* We learn a basic subset here, others left to “lifelong learning”
« Corporate training often introduces/uses quality tools & techniques
« See the American Society for Quality (http://www.asq.org/)

What to Learn About Each Tool

* \What is the tool?

* How is it used”

* For what purposes is it useful?
* \What value does it add?

« \What are its limitations”?

* How can it be used effectively?

iIstogram

* A bar graph showing frequency counts
« X axis often a nominal or ordinal scale; Y axis is how often that X value occurred in
measurements or olbservations
« Use/value: Easy to see relative magnitudes / frequencies
« Sometimes low frequency items are of interest
* For example, dissatisfied customers: histogram may “minimize” these
high-impact but infrequent occurrences
« Can use different color or other ways to highlight importance
« Sometimes multiple bars for each item (e.qg. last year / this year), to show trends and
changes
* Pie chart representation useful if these are parts of a whole
* Not very good if there are several low-frequency items of interest
« Sometimes cumulative frequency line added to show “total at or below this level” —
useful if X axis is ordinal scale

Histogram
—xample: A
Pizza Shop

times ordered

70

60 -
50 -
40 -
30 -
20
10

Slices of Pizza

29

—xample: Distribution of Component Size

10y

Frequency
o K & N D

-

<1l 12 23 34 45 56 67 7-8 89 9-10 >10

Component Size (KLOC)

Run Charts

* Plot of some measurement/metric vs. (usually) time

» Use this when X axis is interval or ratio scale, such as project time, component
size, team size, etc.

» Often used to show trends over time

 Easier to spot overall upward or downward trend, or cyclical variations and
other patterns

* Visually separate random from significant variation
* Major spikes or valleys are triggers for explanation, investigation, or action

* Value: Identification of problems, trends, unexpected good results (may
learn a lot from these)

Run Chart Example for Pizza Shop

Slices/hour

510 1520253035404550556065 707580859095 100

O
O

@)

A rainy o
° o day
O
° ° Getting
o o o . o Warmer
O O o O o
O . (ON®) o o .
891011121234 891011121234 891011121234 Time
PM- AM PM- AM PM- AM
Thursday Thursday Thursday
Week 1 Week 2 Week 3

Scatter Diagram

* Used to determine whether there is really a relationship between
two variables
* Fishbone cause-effect diagramming identifies possible causes
* Doing a scatter plot can show whether the proposed cause and its effect
are correlated

« Visual plot can show degree of correlation, non-linear correlations

» Often annotate fishbone diagram to show whether a possible cause-effect has been
shown to be statistically correlated

* Linear correlations if most points are along a straight line
» Poor (linear) correlation if points scattered all over

 Remember: correlation does not imply a causal relationship!

Scatter
Diagrams

Measuring Relationships Between

Variables

Positive Correlation

.“o’
4.5
Lol
oo b0
4 ' .‘
weele

150 400

650

An increase in y may depend

upon an increase in X.

Positive Correlation”?

S

4.5 1 [] o °

°
L)
©% 0. o :Oo

35 T
150 400

650

If X'is increased, y may also

increase.

No Correlation

[] L J °
)
® [] []
45 L .oo ® °
° ®
® ° ° o o O
°
°
! hd o o © ® e
° o °
® ® °
o e 8, o’ .
35 —@

150 400

There is no demonstrated

connection between x and y.

Non-Linear
Correlations?

650

N

egative Correlation

°
» ®_ 9
oo g ?.3.‘.... e
°Se o.‘.‘o’.“ <
e o

35
150

400 650

An decrease in y may depend
upon an increase in X.

Negative Correlation?

°
[] Py
i, ® o0 ®
45 ‘:' ® .‘.:f' oo ® o o o °
® 0,%e%, 0%’ e,
1 'f 2% 4 o
o.' e 9
35

150

400 650

If X'is increased, y may
decrease.

—Xample
Scatter

Plot from
Tian Text

Defects

McCabe's Complexity Index

FIGURE 5.9
Scatter Diagram of Program Complexity and Defect Level

35

AS/400 0.69 Correlation Coefficient

=xample 18- . o
Scatter Plot o : v
from Tian :
Text o8] N Lineas-Y

' Regression

- 7 Line

System/38

FIGURE 5.10
Correlation of Defect Rates of Reused Components Between Two Platforms

36

—xample Scatter Plot from Tian Text

= Classify the scatter plot aun
according to medians e T |
of component defect 12 Components with
rate 10 _ ¢ high detects in
i Aol B t o both systems
= Apply different 0] L f, o JPTSY
analysis and Y e
improvement 027 B3 0 .
strategies to) TV S
) 0 1 2 3 4 5 6 7
dlﬁerent quadrants GRP, = = =1 4 482 o003 -sti:a:waa
FIGURE 5.11

Grouping of Reused Components Based on Defect Rate Relationship

Control Charts

* Plot of a metric with control limits defined
» Upper control limit: If value of metric exceeds this, take action
 Lower control limit: If value goes below this, take action
« Warning levels: If value outside this, check if all is well

 Control limits may e derived statistically or less formally (based on

“reasonable” values or other impacts)
 Formal statistical process control has formulas for deriving limits: often 3 sigma
deviation from desired outcome

« Useful to flag “outlier” values, such as components with very high defect
rates, projects that have parameters outside “normal levels” etc.
» Formal statistical process control not used much Iin software

Control Charts -- Pizza Example

Upper Limit/'
17 inches

- O
16 inches= X SEEC =

Lower LIl
15 Inche’?\

O
From http://www.freequality.org Small Pl e /'

Cause-And-

—ffect (Fishbone)

Dlagram

 Diagram showing hierarchical structure of causes that contribute to a

problem or outcome:
* Problem of interest forms the backbone
« Spines are causes that contribute to the problem
* Spines may have bones that represent its contributory factors and so on

« Used in brainstorming to diagram and identify various possible factors
contributing to a problem, and to identify causal sequences (A causes

B causes C) and root causes
 Very simple but extraordinarily useful tool

* |nitially both minor factors (that occur rarely or contribute very little) and
major causes may all get listed

Example Fishibbone Diagram

employees
* Example: High attitude .
Inventory Shrinkage | training
new trainee
at local Drug Store N - actions

Shrinkage

Anti-theft tags poorly designed

Expensive merchandise out in the open

No security/ surveillance

shoplifters

Design
nspection
—Xample from
Tian Textbook

Familiar with Select Determine
Ensure Key \ Process Trained Participants
Parucipants Moderator
Checklist g i
Gurpi'lgigﬂm Ensure Procedu DI?'DHMH e
res
\ Needed _Sd'm
N ,. Effective
Resolve Inspection
PL"“U' mLh;ngtm Determi i drsaiad
ne /" Defects
Inspectors nli?rrupamu- e Origin
Reviews / Defect
Minor Error Enaire /. Tieconing
Log Coverage
/
Preparation Inspection
Meeting

FIGURE 5.16
Cause-and-Effect Diagram of Design Inspection

42

Pareto Diagram

 Histogram arranged by decreasing frequency
» Used to identify causes that contribute most to the problem

« After fishbone analysis, may do data gathering to figure out the frequency with

which each cause contributes to the problem
* |In software, review reports are good data sources

* Plot histogram, identify the major causes

» Based on Juran’s Pareto Principle — the 80/20 rule
» “80% of the effects come from 20% of the causes”

* Indicates general principle that some causes likely to be a lot more significant than
others

 Highest cost-benefit from addressing the most significant problems
* Less significant problems may barely be worth addressing

Pizza Shop
—Xample

times ordered

70
60
50

40
30

20
10

|Ill_ l
1 2 3 4 5 6

7

Slices of Pizza

44

Quality
Metrics
Dashboar

| Sonar - Axon Framewark

€« C | M| ¥ hitp://localhost:9000/project/index/229

Home

Dashboard
Components
Violations drilldown
Time machine
Clouds

Hotspots

Timeline

Settings

Project roles

sonar

Search Axon Framework =

Version 0.5-SNAPSHOT - Vri 19 Feb 2010 14:19:55 CET - profile axon

Lines of code

2.348 A
6.308 lines &

Comments
34,0%

1.209 lines &

0 commented LOCs

Rules compliance

99,9% =
Usa
Rel
Eff.
Far
Mai

Events

19/02/2010 Version
11/0272010 Version
19/01/2010 Version

Add an event

Classes

80

9 packages
281 methods &
+39 accessors

Duplications
0,0%
0 lines

0 blocks
0 files

Violations

6

@ Blocker 0

Critical 0

Major 0

4 Minor 3 I
< Info 3 I

0.5-SMNAPSHOT Edit Delete
0.4-SMAPSHOT Edit Delete
0.3-SMAPSHOT Edit Delete

The Axon framework supports developers with the plumbing and

Configuration

Complexity Methods
1,8 [method ai
6,3 f class 10
502 crnpx &

T44 statements &

Code coverage
91,4% A

93,5% line coverage &
84, 7% branch coverage
92 tests &

45sec &

Add a measure

SIG Maintain. Model &
[Alnalysability +

(Clhangeability — ++
(Stability -
(T)estability +
Total Quality
96,2% £

91.4% tests &

100,0% arch £
95,6% design &
97, 7% code

ot

Test success

100,0%
0 failures
0 errors

DRY

P O~ F~
P R ol |
= Administrator = Logout &= ## —
NG

Four Basic Defect Prevention Tools

» Checklists
e f[emplates
* Processes
* \Workflow automation

Checklists

* Once we identify the causes of problems, how do we eliminate
them?

* Checklists are simple and incredibly effective at preventing & eliminating
defects on repetitive tasks
* To Do lists, “did you ...” on bill payment envelopes, etc.

« Capture knowledge about common problems and how to avoid
them

* Can be used in review processes to identify problems
* Lightweight: low additional effort to use (not zero!)
» Checklists that become too long lose value (use Pareto analysis!)

Flowcharts (Process Diagrams)

* Flowcharts show sequencing of activities and decisions
* Depiction of processes for doing things

» Streamline the flow of activities

» Capture knowledge about how to perform activities effectively

* Eliminate problems due to missed activities and badly sequenced
activities
« Can be used to analyze and implement improvement ideas:

» Good processes can save work and avoid problems
* |Less than zero cost for improving quality
« Should always be the goal of process design

Templates (A Type of “Checklist”)

* Templates are another near zero-cost defect elimination mechanism
* Pre-created document structure
 Often pre-populated with “boilerplate” stuff: standard explanations, disclaimers
etc.
* Avoids problems due to missing information, incompleteness
« Avoids problems in activity for which the document is the output
* Need to fill in form, so get the data/do the activity!
* Problems with templates:
* Not all sections are always applicable; may sometimes want different structure
« Can constrain people from doing what they need to
« Can lead to “automaton” mode where people just fill in form without thinking if
that’s the most appropriate thing to do
* Make templates as guidelines, not “set in stone” forms

Workflow Automation

» Creation of computerized tools that streamline activities, such
as automated check-in and build, automated testing
* Implements process, templates
 Eliminates many kinds of defects
» Saves effort

* Flexibility is often a major problem

* [f the needs are different from what the tool supports, can’t do it at all (or
significant work-arounds)

* Designing flexible tools which automate workflow is a major technical
challenge

Summary

* The quality tools provide a suite of methods for quality analysis
and control:
* Histograms, run charts, control charts can identify problems
* Fishbone is used to brainstorm possible causes
 Scatter plots can be used to analyze whether relationships exist
* Pareto analysis identifies which causes are most worth addressing

« Checklists, templates, process definition and workflow automation
can prevent problems

DisScussIions

« Can you manipulate these metrics?
*\What are the problems of these metrics”?

* Do you think Dashboard really helps?

— Table

Phase Found

Phase of Origin

Req

Des

Code Cum.
Found

21

82

114

127

148

Total
Injected

Cum.

Injected

166

(llustrative example, not real data) Phase of Origin

53

Phase Found

